
doc = nlp("Larry Page founded Google")
displacy.render(doc, style="ent")

Visualize named entities

doc = nlp("This is a sentence")
displacy.render(doc, style="dep")

Visualize dependencies

from spacy import displacy

If you're in a Jupyter notebook, use displacy.render .
Otherwise, use displacy.serve to start a web server and
show the visualization in your browser.

Visualizing

spacy.explain("RB")
'adverb'
spacy.explain("GPE")
'Countries, cities, states'

Label explanations

doc = nlp("I have a red car")
doc.noun_chunks is a generator that yields spans
[chunk.text for chunk in doc.noun_chunks]
['I', 'a red car']

NEEDS THE TAGGER AND PARSERBase noun phrases

doc = nlp("This a sentence. This is another one.")
doc.sents is a generator that yields sentence spans
[sent.text for sent in doc.sents]
['This is a sentence.', 'This is another one.']

USUALLY NEEDS THE DEPENDENCY PARSERSentences

Syntax iterators

doc = nlp("Larry Page founded Google")
Text and label of named entity span
[(ent.text, ent.label_) for ent in doc.ents]
[('Larry Page', 'PERSON'), ('Google', 'ORG')]

PREDICTED BY STATISTICAL MODELNamed entities

doc = nlp("This is a text.")
Dependency labels
[token.dep_ for token in doc]
['nsubj', 'ROOT', 'det', 'attr', 'punct']
Syntactic head token (governor)
[token.head.text for token in doc]
['is', 'is', 'text', 'is', 'is']

PREDICTED BY STATISTICAL MODELSyntactic dependencies

doc = nlp("This is a text.")
Coarse-grained part-of-speech tags
[token.pos_ for token in doc]
['DET', 'VERB', 'DET', 'NOUN', 'PUNCT']
Fine-grained part-of-speech tags
[token.tag_ for token in doc]
['DT', 'VBZ', 'DT', 'NN', '.']

PREDICTED BY STATISTICAL MODELPart-of-speech tags

Attributes return label IDs. For string labels, use the
attributes with an underscore. For example, token.pos_ .

Linguistic features

Import the Span object
from spacy.tokens import Span
Create a Doc object
doc = nlp("I live in New York")
Span for "New York" with label GPE (geopolitical)
span = Span(doc, 3, 5, label="GPE")
span.text
'New York'

Creating a span manually

doc = nlp("This is a text")
span = doc[2:4]
span.text
'a text'

Span indices are exclusive. So doc[2:4] is a span starting at
token 2, up to – but not including! – token 4.

Accessing spans

Spans

doc = nlp("This is a text")
Token texts
[token.text for token in doc]
['This', 'is', 'a', 'text']

Accessing token attributes

doc = nlp("This is a text")

Processing text with the nlp object returns a Doc object
that holds all information about the tokens, their linguistic
features and their relationships

Processing text

Documents and tokens

Check that your installed models are up to date

Loading statistical models

import spacy
Load the installed model "en_core_web_sm"
nlp = spacy.load("en_core_web_sm")

$ python -m spacy validate

$ python -m spacy download en_core_web_sm

Download statistical models
Predict part-of-speech tags, dependency labels, named
entities and more. See here for available models:
spacy.io/models

Statistical models

import spacy

$ pip install spacy

About spaCy
spaCy is a free, open-source library for advanced Natural
Language Processing (NLP) in Python. It's designed
specifically for production use and helps you build
applications that process and "understand" large volumes
of text. Documentation: spacy.io

Python for Data Science Cheat Sheet
Learn more Python for data science interactively at www.datacamp.com

https://spacy.io/models
https://spacy.io
http://www.datacamp.com

Learn Python for
data science interactively at
www.datacamp.com

Tokenization Segmenting text into words, punctuation etc.

Lemmatization Assigning the base forms of words, for example:
"was" → "be" or "rats" → "rat".

Sentence Boundary Finding and segmenting individual sentences.
Detection

Part-of-speech (POS) Assigning word types to tokens like verb or noun.
Tagging

Dependency Parsing Assigning syntactic dependency labels,
describing the relations between individual
tokens, like subject or object.

Named Entity Labeling named "real-world" objects, like
Recognition (NER) persons, companies or locations.

Text Classification Assigning categories or labels to a whole
document, or parts of a document.

Statistical model Process for making predictions based on
examples.

Training Updating a statistical model with new examples.

Glossary

"love cats", "loving cats", "loved cats"
pattern1 = [{"LEMMA": "love"}, {"LOWER": "cats"}]
"10 people", "twenty people"
pattern2 = [{"LIKE_NUM": True}, {"TEXT": "people"}]
"book", "a cat", "the sea" (noun + optional article)
pattern3 = [{"POS": "DET", "OP": "?"}, {"POS": "NOUN"}]

Token patterns

Negate pattern and match exactly 0 times.

Make pattern optional and match 0 or 1 times.

Require pattern to match 1 or more times.

Allow pattern to match 0 or more times.

!

?

+

*

Can be added to a token dict as the "OP" key.

Operators and quantifiers

Rule-based matching

Matcher is initialized with the shared vocab
from spacy.matcher import Matcher
Each dict represents one token and its attributes
matcher = Matcher(nlp.vocab)
Add with ID, optional callback and pattern(s)
pattern = [{"LOWER": "new"}, {"LOWER": "york"}]
matcher.add("CITIES", None, pattern)
Match by calling the matcher on a Doc object
doc = nlp("I live in New York")
matches = matcher(doc)
Matches are (match_id, start, end) tuples
for match_id, start, end in matches:
 # Get the matched span by slicing the Doc
 span = doc[start:end]
 print(span.text)
'New York'

Using the matcher

Rule-based matching

Register custom attribute on Span class
has_label = lambda span, label: span.label_ == label
Span.set_extension("has_label", method=has_label)
Compute value of extension attribute with method
doc[3:5].has_label("GPE")
True

CALLABLE METHODMethod extensions

Register custom attribute on Doc class
get_reversed = lambda doc: doc.text[::-1]
Doc.set_extension("reversed", getter=get_reversed)
Compute value of extension attribute with getter
doc._.reversed
'eulb si kroY weN revo yks ehT'

WITH GETTER & SETTERProperty extensions

Register custom attribute on Token class
Token.set_extension("is_color", default=False)
Overwrite extension attribute with default value
doc[6]._.is_color = True

WITH DEFAULT VALUEAttribute extensions

from spacy.tokens import Doc, Token, Span
doc = nlp("The sky over New York is blue")

Custom attributes that are registered on the global Doc ,
 Token and Span classes and become available as ._ .

Extension attributes

Components can be added first , last (default), or
 before or after an existing component.

Function that modifies the doc and returns it
def custom_component(doc):
 print("Do something to the doc here!")
 return doc

Add the component first in the pipeline
nlp.add_pipe(custom_component, first=True)

Custom components

nlp = spacy.load("en_core_web_sm")
nlp.pipe_names
['tagger', 'parser', 'ner']
nlp.pipeline
[('tagger', <spacy.pipeline.Tagger>),
('parser', <spacy.pipeline.DependencyParser>),
('ner', <spacy.pipeline.EntityRecognizer>)]

Pipeline information

Text Doc

nlp

tokenizer tagger parser ner ...

Functions that take a Doc object, modify it and return it.

Pipeline components

Vector as a numpy array
doc = nlp("I like cats")
The L2 norm of the token's vector
doc[2].vector
doc[2].vector_norm

Accessing word vectors

doc1 = nlp("I like cats")
doc2 = nlp("I like dogs")
Compare 2 documents
doc1.similarity(doc2)
Compare 2 tokens
doc1[2].similarity(doc2[2])
Compare tokens and spans
doc1[0].similarity(doc2[1:3])

Comparing similarity

To use word vectors, you need to install the larger models
ending in md or lg , for example en_core_web_lg .

Word vectors and similarity

